Iranian Journal of Electrical and Electronic Engineering 02. (2026) 3835

IUIST

Iran University of
Science and Technology

Iranian Journal of Electrical and Electronic Engineering

Journal Homepage: ijeee.iust.ac.ir

A Combination of Adaptive Neuro-Fuzzy Inference System
and Neural Network for Mobile Robot Dynamic Obstacle

Avoidance

Zead Mohammed Yosif *(¢4), Basil Shukr Mahmood**, Saad Z. Alkhayat*, and Aws Hazim Saber Anaz*

Abstract: A mobile robot must be autonomous to avoid obstacles while traveling
towards the target. Dynamic obstacle avoidance remains a significant challenge in
mobile robotics. Although reactive navigation strategies have been applied to address
this problem, relying on the single-stage module often results in limited efficiency and
restricted overall performance. This paper proposes combining an adaptive neuro-fuzzy
inference system (ANFIS) and a neural network (NN). The data for obstacle severity
classification were used to train the Neural Network. The relative velocity and distance
between the mobile robot and obstacles determine the zone. Zone 1 is dangerous, and
Zone 5 is safe. This paper uses the ANFIS to avoid obstacles during the mobile robot's
motion and to avoid collisions. Based on our empirical study, three essential features
have been considered in this paper: the relative speed, distance, and angle between the
robot and the obstacle as inputs to the obstacle avoidance system ANFIS. The output
was a suggested steering angle and speed for the mobile robot. The simulation results for
the tested cases show the capability of the proposed controller to avoid static and
dynamic obstacles in a fully known environment. Our results show that the ANFIS
System enhances the proposed controller's performance, reducing path Ilength,
processing time, and the number of iterations compared to state-of-the-art research
papers. The proposed work demonstrated better performance in path length reduction
(approximately 6%) and time taken reduction to reach the target, which is reduced by
about 60%.

Keywords: Mobile Robot Navigation, Dynamic Obstacle Avoidance, Neural Network,
Adaptive Neuro-Fuzzy Inference System, Path Planning.

1. Introduction

HE autonomous mobile robot can be defined as a
machine combined with artificial intelligence
techniques to understand the surrounding environment
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conditions and find a path in the presence of dynamic
and static obstacles [1]. The autonomous mobile robot
should be able to respond to environmental conditions
without human aid. The navigation strategies can be
classified into local and global navigation depending on
prior information about the environment. Global
navigation concerns a completely known environment,
while local navigation is related to unknown or partially
known environments[2]. Perception, localization/

mapping, path planning, and motion control are the main
parts of mobile robot navigation. The sensor-based data
collection process is the perception step. The gathered
information is utilized to create a map of the area
(mapping). These sensors are also employed in
localization, establishing the robot's position. Path
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planning determines the target's collision-free route.
Finally, motion control should be used to control the
mobile robot's motion[3].

The most important thing is the existence of dynamic
obstacles, which are obstacles in the environment that
pose a danger to the robot. Actually, obstacles are at
different positions, and they navigate in different
directions and speeds. It is required for the robot to
know the obstacles that exist within the environment and
pose a threat to it. Another essential duty of the control
system is to decide the speed and steering angle of
navigation to avoid obstacles. The primary objective of
this work is to design a module capable of enabling
mobile robots to navigate around both dynamic and
static obstacles. Additionally, the project emphasizes
obstacle classification and incorporates the effect of
relative velocity criteria in both obstacle classification
and mobile robot control.

This work proposes a reactive navigation approach to
deal with dynamic obstacle avoidance. The system
consists of three main parts: the first part concerns
finding the initial path by using the A* algorithm; the
second part is for obstacle classification, which is
achieved using a Neural Network; and the third part is
represented by employing ANFIS for controlling the
speed and steering angle to avoid dynamic obstacles.
This system combines local and global navigation for
mobile robots traveling in the indoor environment. This
paper is organized as follows: section 1 presents the
introduction. The relative works are included in section
2. In section 3, the proposed system is discussed and
introduced. Section 4 presents the initial path algorithm.
In section 5, the neural network and data collection. In
section 6, mobile robot control using ANFIS is
introduced. The results and discussion are introduced in
section 7. Comparison with other work in section 8. The
conclusion and suggestion are given in section 9.

2. Related work

As mentioned in the previous section, this work
incorporates multiple intelligent techniques. Finding the
initial path is a crucial step; hence, a widely recognized
A* algorithm have been employed, which is known for
its effectiveness in path planning [4]. Al- Arif et al. [6]
Performed a comparison of three path planning
algorithms, namely, the Breadth-first algorithm, the
Dijkstra algorithm, and the A* (A-Star) algorithm,
regarding computational time and memory usage.
Among these, the A* algorithm yielded the most
favorable results. Also, Giraldo [7] Conducted a
comparison involving RPM, genetic algorithm, and A*
algorithm, where the A* algorithm consistently
produced the shortest path lengths.

Artificial Neural Networks (ANN) share many
similarities with biological neural networks, and they are

influenced by three factors: network design, weight
generation (training/learning method), and the activation
function. [8]. The Neural Network (NN) is used in many
fields and applications, such as signal processing, image
processing, pattern recognition, and mobile robot
navigation. [9].

Jebur et al. [10] Proposed a Multi-layer Perceptron
(MLP) for target recognition and obstacle avoidance.
They utilized an IR camera to filter the red target from
others and used MLP with IR sensors to avoid dynamic
or static obstacles. A neural network was proposed by
Aamer et al. [11]; they implemented an NN on an FPGA
that uses pipelines. The NN was implemented on Xilinx
Virtex-1II to deal with the real-time experimental mobile
robot with a dynamic obstacle.

In another study, Low et al. [12] Employed the Flower
Pollination Algorithm (FPA) to improve Q-learning for
finding paths in static environments. The combination of
Q-learning and FPA, called IQ-FPA, resulted in an 11%
increase in efficiency. Their experimental setup involved
a three-wheel mobile robot operating in a 3x3 meter
environment.

Khanisi et al. [13] A neural network produced the
PWM of the right and left wheels from two input
velocities. Li et al. [14] A neural network data fusion
strategy was used to reduce the affection induced by
inaccuracies in the environment or measurements and
enhance the real-time performance and accuracy of
localization for mobile robots in interior environments
the position accurate within 6 cm. Pandey et al. [15]
Introduced a path-planning optimization method using
Particle Swarm Optimization (PSO) and Feed-Forward
Neural Network (FNN). The FNN used distance sensors
as inputs to calculate the steering angle and focused on
path optimization. However, the use of PSO slowed
down the system, the distance and time reduced about
8% and 9% respectively for time and distance. A
summary of the papers mentioned above is provided in
Table 1.

Table 1. NN research summary.

Paper Method Obstacle Characteristics
Type
[10] MLP Dynamic Avoiding dynamic obstacle
(2017)
[11] NN Dynamic Use FPGA to implement NN,
(2017) Pipelining, low memory, high-
speed
[12] 1Q-FPA Static 1Q-FPA reduces computation
(2019) 1QD time, and 1QD produces a
shorter and smoother path
[13] NN Static Controlling motors PWM
2018
[14] NN Static Enhancing localization
2020
[15] NN+PSO  Dynamic PSO optimizes the path
2020 generated by NN
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The integrated NN and Fuzzy Logic Inference system
are the adaptive neuro-fuzzy inference system (ANFIS).
Singh et al.[16] Suggested using ANFIS in mobile
robots to avoid dynamic obstacles in unknown
environments. The author employed three distance
inputs (front, right, left) and an angle between them as
ANFIS inputs, with the output being a suggested
steering angle. The ANFIS system is called into action
when the distance reaches a threshold that might lead to
a collision between the robot and obstacles. By
analyzing whether an object is close enough to cause a
collision, the robot can effectively move away from
obstacles in the opposite direction. The authors
demonstrated the ANFIS's ability to control the mobile
robot and avoid stationary and moving obstacles in
crowded environments. Comparing to other paper the
time and path reduced about 50%.

Pandey et al. [17] discussed the most crucial duties of
any mobile robot: navigation and obstacle avoidance.
The ANFIS controller was used for mobile robot
navigation and obstacle avoidance in uncertain static
environments. Several sensors, such as ultrasonic range
finder and sharp infrared range sensors, are used to
detect forward obstacles in the environment. Obstacle
distances received from the sensors are fed into the
ANFIS controller, and the controller output is a robot
steering angle. NEAR and FAR are the two Gaussian
linguistic variables chosen. They concluded that the
ANFIS controller is superior in simulation and
experimental testing. This proposed controller could
solve dynamic obstacles and difficulties in the future.

For autonomous mobile robots' collision-free
navigation, Gharajeh et al. [18] developed a model
consisting of an ANFIS controller for local obstacle
avoidance and a GPS-based controller for the robot's
global navigation toward the target. The GPS-based
controller maintains the robot's navigation direction
toward the static or moving target. When the robot
detects any obstructions nearby, the ANFIS controller
determines a steering angle. It calculates the angle using
the robot's left, front, and correct distances from
obstacles.

Samadi et al. [19] proposed an effective path-planning
strategy for autonomous collision-free navigation of
wheeled mobile robots based on an Adaptive Neuro-
Fuzzy Inference System (ANFIS). Three ultrasonic
sensors installed on the robot's left, front, and right sides
were utilized to estimate the distance between obstacles
and the robot. The ANFIS-utility function block utilized
these sensor distances as inputs to determine an obstacle
avoidance steering angle for the robot—the suggested
method produced paths roughly 30% shorter than those
generated by other methods. Error! Not a valid
bookmark self-reference.

Stavrinidis and Zacharia [20] introduce ANFIS to
enhance a autonomous robot navigation system to
achieve both static and dynamic obstacle. The authors
compare between using ANFIS and fuzzy logic
controller. The simulation results showed that the
ANFIS lead to 33% rule reduction if compared to fuzzy
logic controller in addition to reducing time to reach the
destination about 2.5%.

Bede et al [21] propose a four navigation system , two
of them for wheel speed controlling and the others for
obstacle avoidance through suggestion steering angle.

Table 2 Summarizes the papers mentioned above.

Table 2. ANFIS papers summary.

Characteristics

Paper Method Obstacle  Simulation
(year) Input Output .
type /experiment
Left and
right front Steerin Static+  Experiment
[16] (2009) ANFIS distances & ro Spenimen
angle Dynamic and simulation
and target
angle
[17] (2016) ANFIs Ve  Steering o Experiment
distances angle and simulation
[18] (2020) ANFls  [Mvee  Steering i Simulation
distances angle
[19] (2022) ANFIs  "ve€  Steering g Gimulation
distances angle
[20] - Motor Static + . .
(2024) ANFIS Six distances speed  Dynamic Simulation
Motor
[21] Difference  speed & Static . .
(2022) ANFIS angle steering + dynamic Simulation
angle

In conclusion, this work must incorporate multiple
intelligent techniques, including the widely recognized
A* algorithm for path planning. Various studies on
neural networks and fuzzy logic have demonstrated their
effectiveness in mobile robot navigation, obstacle
avoidance, and path optimization. Additionally, the
proposed integrated approach, ANFIS, shows promising
results in avoiding dynamic obstacles and achieving
collision-free navigation. Training a system for obstacle
danger classification and navigation controller produces
faster and more efficient navigation in complex
environments. The combination of the A* algorithm,
neural networks, and ANFIS opens new possibilities for
future mobile robot control and obstacle avoidance
advancements.

3. Proposed system

The proposed system can be understood by examining
the primary task of the mobile robot. The proposed
system begins by initializing the environment and
defining the mobile robot start and target position. The
A* search algorithm is then employed to compute an
initial, optimal path. While navigating, the system
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continuously monitors dynamic obstacles to gather data
on their speed and relative distance. This data is
subsequently processed by BRNN which classified the
obstacles. This classification is determined whether the
obstacle is danger or not. I the obstacle is non-critical,
the robot continuous along the original A* path.
However, if an obstacle is classified as dangerous, an
ANFIS is activated to adjust the robot speed and steering
angle. After successful avoiding the obstacle, the robot
returns to its originally planned path.

The proposed system is structured into three main
components: (i) initial path generation using A*
algorithm, (ii) obstacle collision prediction utilizing
neural network, and (iii) obstacle avoidance
implementation through ANFIS. the overall architecture
of the proposed system is illustrated in Fig.1.

Read Get information | | Call classifier call ANFTS
Environment about dynamic [3 ~ model e
T obstacles (newral network)
Mobile robot and S ions Move 10 next
target position Taret position

Find initial path
using A* algorithm

Fig.1: Proposed System Block Diagram.
4. Initial Path Planning

Problems with finding a path or path planning are
widespread in robotics because it is critical for
autonomous mobile robot navigation. The path-planning
challenge for mobile robots remains an issue in
autonomous robotic research. Robotic systems can
choose an optimal or sub-optimal path based on one of
the considered criteria of mobile robot motion (such as
the lowest traveling cost, shortest route, shortest motion
time, and so on) [22]. A suitable trajectory is created as a
series of actions to keep the robot moving from the start
state to the target point while passing through several
intermediate states. Every decision made by path
planning algorithms is based on the information
available at the time and the criteria used [23]. The
Dijkstra algorithm is the foundation for the A* algorithm
[24]. The A* algorithm is one of the most widely used
algorithms for determining a feasible path between two
points. It is very effective and straightforward to put into
practice. The A* algorithm solves path-planning
problems in robotics and video games. When A* is used
in a 2D path planning problem, the robot is treated as a
point, and the radius of the mobile robot enlarges
obstacles. This calculation can be done using
configuration space calculation. A* algorithm obtains a
path between the start and goal point by connecting four
or eight connected nodes in a square shape, depending

on the application. The A* algorithm is a best-first-
search algorithm that combines the advantages of
uniform-cost and greedy searches with a fitness function.

(n) = g(n) + h(n) @)

where g(n) denotes the total cost from the start node to
the current node, and h(n) represents the heuristic
estimated function from the current node to the goal
node. Typically, h (n) is calculated using the Euclidean
distance between the current node and the goal node.
[25].

5. Obstacles classification and collision prediction

Classifying obstacles is very important, as it allows us
to identify the degree of seriousness of the dynamic
obstacles toward the mobile robot. The main objective of
this classification is to determine whether the existing
obstacle or obstacles are dangerous and have a
probability of collision with the robot. two factors to
assess obstacle danger have been suggested: the distance
and the relative speed between the robot and the
obstacle.

The most important question is how the robot can
know the obstacles within the environment that pose a
threat to it and may collide with it. One idea is that a
closer obstacle is more dangerous than a far obstacle.
Still, the main issue that should be considered is the
speed of the obstacle because if there are two obstacles
at the same distance from the robot, the more dangerous
obstacle moves faster than the other. Depending these
ideas, the areas surrounding the robot are categorized
into five regions or zones. The five classified zones are
Zone 1, Zone 2, Zone 3, Zone 4, and Zone 5. Depends
on the relative velocity and distance between the mobile
robot and obstacles, where the Zone 1 is considered the
most dangerous, while Zone 5 is a safe area, and the
degree of danger varies among the five regions. In this
work, the relative velocity in addition to distance is
added in the obstacle classifications. Table 3 summarizes
the zone's characteristics.

Table 3. Zones Characteristics.

No Zone Name Speed (cm/sec) Distance (cm)
! Zone 5 <=4 >=90
2 <=6 >=120
3 8-10 >=120
4 Zone 4 6-8 90 to 120
5 1-4 60 to 90
6 >=10 >=90
7 Zone 3 8-10 90 to 120
8 6-8 60 to 90
9 <4 <60
10 <4 <60
11 Zone 2 8-10 60-90
12 Zone 1 >=10 <90
13 >=8 <60
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5.1 Data collection

The region where obstacles surround the mobile robot
can be divided into five zones. An essential step in
collecting data is using it for neural network training so
the neural network can classify the obstacles within the
environment in which the robot moves.

For Zone 1, let the specified speed be 10 cm/sec and
the distance between 30 and 60 cm. To cover the
distances between 30 and 60 cm, the Zone is divided
into 10 points or 10 readings (30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60). At each point, thirteen angle readings
cover the range from -90 degrees to 90 degrees in a step
of 15 degrees. The readings cover the range (-90) -(-75)
-(-60) -(-45) -(-30) -(-15)-0-15-30-45-60-75-90. The idea
is declared in Fig.2: Spectrum of path's angle, whereas
the red region represents the area that needs to be
divided. This case represents a speed of 10 cm/sec. The
white arrows represent angle distribution. The dotted
line between A&B points is the distance to be red. There
are 10 readings at each angle, so each case has 130
readings. Also, there are 16 cases. Thus, there are 16 *
140 = 2080 samples. A Lidar sensor is used to measure
the distance at certain angle.

0

LAy

> <——
o D

Fig.2: Spectrum of path's angle.

90 90

Integrating Matlab (2019) and CoppeliaSim (Edu
V4.1.0) software, a robot simulation environment used
to prototype, develop, and test robot systems and
algorithms, achieves the data collection steps. [26]A
distance sensor in CoppeliaSim has been used to read the
distance of moving objects that move at a specific speed
and angle. When the object moves toward the mobile
robot, CoppeliaSim sends ten reading values to Matlab
to collect data for the training process.

5.2 Neural network for obstacle classification

More than one method can be used to learn and train
the data to create a specified model. A back-propagation
(BP) neural network trains data and builds the module.
The BP stands for error correction between output and
target. The standard back-propagation neural network
uses the BP algorithm, which has three types of layers:
input layer, hidden layer, and output layer (Fig.3). The
training data enters the neural network through the input

layer; after that, the hidden layer represents the
processing layer, and the output layer is the last stage
that produces the module's decision [27]. The output
layer's results are compared with target data to find the
error between them. Suppose the error is large enough
and more significant than the threshold value. In that
case, the gradient descent method is used to update the
weights' values along the connections in a backward
manner from the output layer until they reach the input
layer. This iterative process continues to reduce the error
objective function Ew.

K
1
onek,, = Ez(tk —0,)? @
k=0

HIDDEN LAYER

Fig.3: the multi-layer perceptron.

Where:
e x;: The i input

e 3 The output of the /" hidden neuron

e Oi: The output of the k™ output neuron.

o 12 The desired output

e V;;: The weight from the i input to the /" hidden
neuron

o W,;: The weight from the /" hidden neuron to the A"
output neuron

e #: The learning rate.

e I: index for input neurons.

whereas
The hidden layer's weights are updated using the
equation (3):

Vij(n+ 1) =V;(n) + nx §j(n) xxi(n)  (3)

9j is the error signal produced by the jth hidden neuron.
The weights of the output layer are updated using the
equation (4):

Wi (n + 1) = W(n) + n X6 (n) X yj(n) 4

Ok is the error signal produced by the kth output neuron.
As clear in equation (5)
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S(n+ 1) = (4 —0y) x(1 (5)
—0p) X0y

Using 8k, the §j calculated from the equation (6) as
follows:

k
8= (1—y) xy; x Zk_osk X Wy

So, for any input, the output of the hidden neurons is
obtained first, followed by the output of the output layer
neurons. The above equations are used to update the
weights of each hidden and output layer neuron. The
hidden neuron error signals are propagated backward
from the output layer to the hidden layer. This process is
repeated for the next input-output pattern [28]. The
process is repeated until the target error threshold or
several iterations are reached, at which point learning
stops. The descent of the standard BP learning
algorithm, on the other hand, is a first-order gradient
algorithm with a slow convergence rate.

(6)

The Matlab (trainbr) command is used to perform
Bayesian regularization back-propagation. By learning
the zones that were suggested based on two inputs, the
best performance is used to generate the solution. There
are approximately 2000 pieces of environmental data
knowledge. The training data was divided using Matlab's
default divide function. The data are randomly divided
and applied to the neural networks. 70 % of the data is
used for training to compute the gradient and update the
network weight and biases. A validation set representing
15% of data is used to monitor errors during training.
During the training process, the test set for plotting the
test set error is 15% of the data. The network was trained
over 1000 epochs.

The general structure of the neural network after data
reduction is shown in Fig.4. From the confusion matrix
of the Bayesian Regularization Neural Network, which
has two Hidden Layers after data reduction, as shown in
Fig.4, the training accuracy equals 99.1%. The trained
neural network model is used to test samples of data.
These sample outputs are known. The confusion matrix
is shown in Fig.5. The characteristics of this network are
summarized in Table 4.

A Zone1
)—>

) am, Zone
Velocity \ S

Distance a

£ Zone3
—_—

) Zoned
—s

Hidden layers Output layers
Input layers

Fig.4: Two Hidden Layer Neural Network Structure After
Data Reduction.

Confusion Matrix

167 0 0 0 0 100%
18.6% 0.0% 0.0% 0.0% 0.0% 0.0%

0 168 2 0 0 98.8%
0.0% 18.7% 0.2% 0.0% 0.0% 1.2%

0 4 275 0 0 98.6%
0.0% 0.4% 30.6% 0.0% 0.0% 1.4%

0 0 2 118 0 98.3%
0.0% 0.0% 0.2% 13.1% 0.0% 1.7%

Output Class

0.0% 0.0% 0.0% 0.0% 18.2% 0.0%

100% 97.7% 98.6% 1009 100% 99.1%
0.0% 2.3% 14% 0.0% 0.0% 0.9%

Target Class

Fig.5: The Confusion Matrix of Bayesian Regularization
Neural Network with Two Hidden Layers After Data
Reduction.

Table 4: Bayesian Regularization NN with two hidden layers

After Data Reduction.

Characteristics Neural network 2
1 Number of input layer neurons 2
2 Number of hidden layer neurons 10, 10
3 Number of output layer neurons 5
5 Hidden layer activation function Bayesian Regularization
6 Output layer activation function Linear
7 Learning rate 0,05
8 Maximum number of epochs 1000
9 Accuracy 99.1 %
10 Validation accuracy 99.1 %

6. Adaptive Neuro-Fuzzy Inference System for
Collision Avoidance.

An ANFIS was suggested by Singh et al. [16] for
mobile robot navigation to avoid dynamic obstacles. The
ANFIS system combines fuzzy logic and a neural
network, whereas the input layer is a fuzzy logic system.
However, a neural network takes the fuzzy logic rule
from trained data. By this method, the module takes
advantage of fuzzy logic and neural networks by
combining them and excluding their disadvantages.

The fuzzy logic approach is critical in the
applications of intelligent systems, especially robotics.
Integrating fuzzy systems and neural networks enhances
the system performance by learning and updating
membership  function parameters to suit the
environment. ANFIS combines a Neural Network and
fuzzy logic system that uses empirical datasets to
describe a complicated system's input/output behavior
[18].
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Takagi—Sugeno fuzzy inference system and artificial
neural networks combine to form ANFIS. The ANFIS
uses the dataset to build rules and a membership
function. [17]. The ANFIS combines two fundamental
machine learning techniques: the ANN and the Fuzzy
Learning Machine (FLM). The FLM is utilized to
transform the available inputs into desired outputs by
utilizing densely linked ANN processing units. Early in
the 1990s, it was developed as a universal estimator. In
addition to combining the advantages of ANN and FIS,
it also eliminates their disadvantages. It thus enhances
generalization  performance, archives  extremely
nonlinear mapping, and produces reliable solutions. As a
result, researchers used it to handle classification,
regression, and feature extraction problems in various
fields of study. [29]. ANFIS's generalized structure
comprises five layers (Fig.6) in addition to the input and
output layers. [30].

Input IF Part Rules + Norm Output

Layer 1 Layer2 Layer3 Layer4 Layer§
x

{* N\ @ - .e o

n ———»> N A1 —_
ﬂ\wz W ‘;’1'
s A
T

I ——»f

Layers 1 2+3 4 5

Fig.6: structure of ANFIS model with two inputs [31].

The characteristics of each layer are shown in the
following:

Layer 1 (Fuzzyfing Layer): Neurons in this layer are
adaptive nodes with premise parameters.

In layer 1, the outputs of the nodes Al and A2 for the
input x1 and the triangular membership function can be
calculated at equation (7)

T (x,) = IlAi(xl) (7
_ (X1 a X ) .

= max(mm(b_a , C_b>,0),forl
=12

Similarly, with the input x2, the outputs of nodes Bl
and B2 can be expressed as clear at equation (8).

Ti (x;) = IlBi(xz)

= max (min (J;)Z__;,Cc__xbz),o) ;fori ®)
=12

Layer 2: (Implication Layer): The neurons are labeled
Pi and are shown by a circle. The output node is then
created based on the input signals. Equation (9) shows
the output node indicates the firing strength of a rule wi.

T? = w; = pa, (1) X pp,(x;); where i
Z 12 )

Layer 3: (Normalizing Layer): Each neuron in this
layer is a fixed neuron, denoted by a circle and
designated N. The output is determined by the ratio of
the ith rule's firing strength to the sum of all rules' firing
strengths as it clear at equation (10) .

Wi ; (10)

TP =w;, = o3 swhere i = 1,2
Zk=1Wk

L

Layer 4: (Defuzzyfing Layer): The neurons in this
layer are adaptive neurons with consequence parameters,
see equation (11).

T = wit; = wi(mx, +nx, (11)
+0;);where i =1,2
Where mi, ni, and oi are the consequence parameters
of the ANFIS model.
Layer 5: (Combining Layer): This layer comprises a
single neuron that combines all the inputs as shown at
equation (12).

- Z Wit, = where i = 1,2 (12)
i=1
The system has three inputs and two outputs. The
inputs include relative robot-obstacle speed, distance,
and angle between obstacle and robot, as shown in Fig.7.

locity
Ve l

Distance
e

Angle l

Fig.7: ANFIS Input/Output system.

Robot Velocity

Robot Steering
Theta

The system outputs are suggested to be speed and the
steering angle of the mobile robot. A data set should be
available for system training to implement the ANFIS
system. Five thousand records of data sets have been
created. These data include a vector of 5 columns and
5000 rows; the first three variables of each row represent
system inputs, while the last two variables include the
outputs of speed and steering angle. The distribution
training data cover a range of angles from -90- to 90
degrees, distances from 1 to 120 cm, and speeds from 1
to 50 cm/sec. Using ANFIS, up to n-inputs can acquired
but cannot obtain more than one output. For this reason,
two training systems are employed due to the presence
of two outputs. The first training system is for speed, and
the second system is for steering angle. The data set has
been divided into three parts. The first part includes
4000 records for training, and the second and third parts
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for testing and validation take about 500 samples each.
The inputs of the two systems are the same. The speed
training error is 0.71298, the testing error is equal to
1.0266, and the validation error is equal to 0.9582. The
membership that is used here is Gaussian membership.
The angle training error is 1.766, the testing error equals
3.93, and the validation error equals 3.08. The training,
testing, and checking are presented in Fig.8 and Fig.9.
The ANFIS block diagram is shown in Fig.10.

Training Error Testingdata:. FiSoutput:*
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7. Results and discussions

Environment chosen to implement the proposed
system consists of 500 * 500 pixels. Each pixel
represents 1 cm. Thus, the dimensions of the
environment being worked on are 500x500 cm. These
environment dimensions refer to the accuracy with
which the robot moves, as the movement and accuracy
will be at the level of one centimeter, which is good
accuracy when moving the robot indoors[14] . Two
types of environments have been used in this work. The
first type is an empty environment that does not contain
any static obstacles, which is called a free environment.
The second proposed environment contains static
obstacles. The positions of static obstacles have been
chosen to make a challenge in some cases.

The distance was derived analytically from the spatial
coordinates of two reference points — the robot and the
obstacle. The distance measured using the Euclidian
distance equation between two pints, also the relative
angle between them.

The angle of the mobile robot can be calculated from
two points, when the robot moves from one point to
another, for example, P1 and P2 (the previous position
and current position). We can use the tan inverse
function to find the angle of the mobile robot, and in the
same way, the angle of the obstacle can be found.

In the following scenario (Test 1), the mobile robot
starts position from the left bottom environment with
position (50,10). The target position is (400,400). As it is
clear, this distance approximately covers the minor
diagonal of the environment. There are many dynamic
and static obstacles in the environment. Static obstacles
were determined in the previous step by reading about
the environment without dynamic obstacles. The static
obstacle is represented by black bars in the environment.
A dotted red line plots the initial path from the start
position to the target. There are three dynamic obstacles
in the environment. These dynamic obstacles move in
different directions. The first obstacle is the red color.
The obstacle speed is 10 cm/sec, moving in the right
direction from the environmental center. The second
obstacle is colored green color. The second dynamic
obstacle moves at -50 degrees in the left-down section of
the environment with a speed equal to 10 cm/sec. The
third dynamic obstacle is blue. The position of this
obstacle is at the top and moves down in a direction with
a speed equal to 10 cm/sec. The current position of
dynamic obstacles is referred to by colored circles (red,
green, blue). A colored line indicates the distance
traveled by the obstacle, and each line is colored
according to the color of the obstacle. The robot is
specified by using a black circle surrounded by a blue
rectangle, which represents the robot's current location.
As was mentioned, a red dotted line drew the proposed
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path, while the path that was traveled by the robot is in
black. Consider the suggested environment, including
stationary and moving obstacles, and the recommended
initial path. Any of the moving obstacles that pose a
threat to the mobile robot can be classified through this
data.

The suggested method continually gathers data on the
robot's speed and the distance to the dynamic objects, so
it continuously examines the moving obstacles and
classifies them to find out which is more dangerous. As
it is clear, the first dynamic obstacle is moving away
from the mobile robot and its path. So, it is not classified
as a danger or as having the possibility of collision. This
moving obstacle is classified. After all, it is not
dangerous because it's moving in a direction away from
the robot. The second and third moving obstacles pose a
danger to the moving robot, and there is a possibility of
collision. For this reason, the system will decide to
prevent a collision. The decision is represented by
changing the speed of the mobile robot in addition to the
steering angle.

The suggested angle and speed are the outputs of the
adaptive neural fuzzy system, where the entries for this
system are the angle between the robot and the obstacle,
the relative speed between the obstacle and the robot,
and the distance between the obstacle and the robot.
These data are input into two models: the first gives the
suggested speed of the mobile robot, and the second
gives us the suggested angle at which the robot turns to
avoid the dynamic obstacle. The flowchart of the
proposed system is shown in Fig.11.

The robot avoids the obstacle twice; the first time, it
avoids the second obstacle, and the second time, when
the third obstacle is avoided. The distance of the
proposed path is 540 cm, and the displacement between
the starting point and the target is 530 c¢cm, while the
robot's length travelled after avoiding obstacles is 650
cm. The time taken by the robot from the start towards
reaching the goal, including avoiding the two obstacles,
is 8.8 seconds, and the number of iterations is 86. The
information and characteristics that are obtained through
this scenario are presented in Table 5 and Fig.12.

Another scenario (Test 2) is applied, including three
dynamic obstacles. The first and the second dynamic
obstacles are moving away from the mobile robot and its
path, so they are not classified as dangerous obstacles or
have the possibility of collision. Thus, these dynamic
obstacles are classified. After all, they are not harmful
because they move in a direction away from the robot; as
for the third moving obstacle, even if it is moving in the
direction of the proposed path of the robot, it is so far
that it is classified on the basis that it is not dangerous.
For these reasons, the robot continues motion on the
initially suggested path.

Read Environment, start, goal,
static obstacles

Read dynamic obstacle
information
v
I Call NN classification module

Call avoidance module
(Update robot Speed & steering angle)
v

Call scale steering module

| Return to original path I

Fig.11: Proposed system flow chart.
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Fig.12: BRNN-ANFIS for Environment with Static and three
Dynamic obstacles (Test 1).
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The distance of the proposed path is 540 cm, and the
displacement between the starting point and the target is
530 cm. The time taken by the robot from the beginning
of the path until reaching the goal is 7.4 seconds. The
number of iterations is 78. The information and
characteristics are presented in Fig.13 and Table 5.
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Fig.13: BRNN-ANFIS for environment with static and three
safe dynamic obstacles (Test 2).

Another scenario (Test 3) applied here includes three
dynamic obstacles. The first obstacle starts from the top
right corner and moves toward the mobile robot. It starts
from the left button corner with an angle of -140
degrees, and its speed equals 35 cm/sec. The second
dynamic obstacle moves toward the mobile robot and its
path with an angle of -45 degrees and 40 cm/sec speed.
Obstacle 3 has the same speed as Obstacle 2, but the
direction is -100 degrees.

When the three dynamic obstacles, they are seen to
move towards the mobile robot, thereby posing a clear
danger and the possibility of collision. Consequently,
each of the three obstacles is classified as dangerous, and
the obstacle avoidance is activated.

The critical aspect of this scenario is that the three
dynamic obstacles move faster than in the previous
examples. These obstacles pose a danger and the
potential for a collision with the moving robot, but the
robot avoids all these obstacles safely, well, and quickly.

The proposed path is 546 cm long, and the
displacement between the starting point and the target is
530 cm. The robot traveled 660 cm after avoiding
obstacles. The time taken by the robot from the
beginning of the path to the goal is 16 seconds. The
number of iterations is 116. Table 5 and Fig.14 show the
information and characteristics obtained through the
applied scenario.
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Fig.14: BRNN-ANFIS for Environment with Static and three
dangerous Dynamic obstacles (Test 3).

A scenario (Test 4) applied here includes three
dynamic obstacles. The first and second dynamic
obstacles move toward the mobile robot and its path.
Obstacle 1's speed is 10 cm/sec, and its direction is -150
degrees. Obstacle 2 and obstacle 3 have the same speed,
which equals 10 cm/sec, and their directions are -37 and
-90 degrees, respectively.

When the first obstacle is observed to be close to the
robot, a decision is made for the obstacle to be avoided
in order to prevent any collision. For this reason, the
system classified obstacle one as dangerous. As shown
in Fig.14, the mobile robot starts its avoidance at point A
and returns to the path at point B. As soon as the mobile
robot arrives at the initial path at point B, obstacle 2 is
classified as dangerous or has the possibility of a
collision. For this reason, the mobile robot moves away
from obstacle 2. During the mobile robot traveling from
point B, another obstacle (obstacle 3) moves closer to
the mobile robot. The third obstacle direction is -90
degrees and moves toward the mobile robot. The most
crucial issue in this scenario is continuously checking
the environment during the path from point B to point C.
In this situation, the mobile robot is using an avoidance
strategy. Although the mobile robot uses the avoidance
strategy at point C, the mobile robot system recalls the
avoidance system again. After avoiding obstacle three,
the mobile robot returns to point D's initial path toward
the target. The distance of the proposed path is 300 cm,
and the displacement between the starting point and the
target is 300 cm. While the length that the robot
travelled after avoiding obstacles was 350. The time
taken by the robot from the beginning of the path until
reaching the goal is 35 seconds. The number of iterations
is 304. Table 5 and Fig.15 show the information and
characteristics of the applied scenario.
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Table 5: Results and Characteristics for Tests (1-4).

The first comparison was conducted in the proposed
environment (Test 1), which consisted of two dangerous
moving obstacles and one safe obstacle amidst static
obstacles. The results demonstrated an improvement in
the system's performance. Notably, the time taken to
reach the target was reduced by 27%, and the number of
iterations needed decreased by 7%. Additionally, another
test was carried out, this time involving three dangerous
obstacles moving toward the robot. In this scenario, the
proposed work achieved a time reduction of
approximately 12%. The results of the first comparison

are presented in Table 6.

Table 6: Comparison of the proposed model with BRNN-FL

Characteristics Test1 Test2  Test3  Test4

Initial path length using A*

(cm) 541 541 546 300

Time required for initial

path(sec) 8 8 8 0.6

direct length from start to end

points 530 530 530 300

Path length after avoidance 600 sa1 648 356

(cm)
Obstacle 1 velocity(cm/s) 10 10 35 9
Obstacle 2 velocity(cm/s) 10 10 40 8
Obstacle 3 velocity(cm/s) 10 10 40 5
Robot velocity (cm /s) 120 120 60 10
Relative velocity 1 - (cm /s) 108 108 94 16.5
Relative velocity?2 - (cm /s) 118 118 82 16
Relative velocity3 - (cm /s) 120 120 100 15
Time from start to goal 8 sec 7.4) 8 sec 35
No of iterations 78 78 115 78

[32].
Characteristics BTNN- BRNN- BTNN- BRNN-
FL[32] ANFIS FL[32] ANFIS
Environment Test 1 Test 4
Initial Path length 541 541 300 300
using A*
T.ln.le' required for g 3 06 06
initial path(sec)
direct length fr.om 530 530 300 300
start to end points
Obstacle 1
velocity(cm/s) 10 10 ? ?
Obstacle 2
velocity(cm/s) 10 10 8 8
Obstacle 3
velocity(cm/s) 10 10 3 3
Robot velocity (cm /s) 120 120 10 10
Path length after 601 600 358 350
avoidance (cm)
Increased Rath length 1 1 19 17
ratio
Time from start to end 15 1 41 36
(sec)
Number of iterations 92 86 321 304

The length of a paper is limited to 8 pages of two-

8. Comparison with other work

The proposed work was compared with two other
existing works. The first comparison involved two
scenarios compared with the proposed models. The first
work under comparison suggested the use of a neural
network and fuzzy logic (BRNN-FL) [27]. The
comparison was based on several factors, including the
distance the robot covered from the starting position to
the target, the time to reach the target, and the number of
iterations required to achieve the target.

Another project is compared with the proposed model.
Pandey et al. [15] Introduced a path planning
optimization using PSO and FNN. They utilized a feed-
forward neural network, with distance sensors as inputs
and the steering angle as the output, to focus on path
optimization. However, their implementation of PSO
resulted in a system slowdown. Consequently, the
robot's velocity was limited to 3 cm/sec, covering a
distance of only 110 ¢cm in 39 seconds. In contrast, our
system allows for significantly higher speeds, reaching
up to 100 cm/sec, which improves overall efficiency.

In comparison to our proposed model illustrated in
Fig.16(a), the work by [15] was also examined, as
depicted in Fig.16(b). The results of our designed model
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exhibit superior performance in terms of both the
distance travelled and the time taken to reach the goal, as
evidenced in Table 7.
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Fig.16:Comparison between BRNN-ANFIS (proposed
method) and PSO-tuned FNN[15].

Our proposed system presents a significant
advancement over the work in [20] by addressing its key
limitations, namely the absence of global path planning,
obstacle classification, and quantitative performance
metrics. Our system introduces a hybrid intelligent
architecture that integrate A* algorithm for optimal
global path planning. The BRNN for -classifying
obstacle, and ANFIS for adaptive navigation control.
Out system archives 6% reduction in path planning and
60 % faster navigation.

Table 7: Comparison and characteristics between BRNN-
ANFIS and PSO-tuned FNN.

Characteristics BAII{\III?I\Q PSO Tuned FNN[15]
Path length 387 cm 410 cm
Time required to travel 10 sec 39 sec
Time to find the initial path 5 sec 0
Total time 15 sec 39
Path length reduction 6%
Time reduction 62%

Based on previous comparisons, our proposed model
outperforms existing approaches regarding navigation
efficiency and obstacle avoidance. The comparisons
show significant improvements in reaching the target
faster and with fewer iterations. Our system's higher
velocity capabilities offer a clear advantage over PSO
and FNN-based methods. These findings highlight the
effectiveness of our approach for mobile robot
navigation in complex environments, making it a
promising solution for future dynamic obstacle
challenges.

9. Conclusion

Navigating an autonomous mobile robot with obstacles
moving toward its path is still a significant challenge.
The use of a single-stage module leads to a deficiency
and a limitation in the controller's performance in
avoiding dynamic obstacles.

The proposed dynamic obstacle's data collection of
relative speeds and distances for training neural
networks made it capable of making correct zone
classification. Using the neural network to classify the
danger of the moving obstacle leads to reducing the
processing time. Thus, the mobile robot could rush in the
presence of safe, dynamic obstacles and fast dynamic
obstacles.

The simulation results proved that using the ANFIS to
control the mobile robot's speed and direction of motion
allows it to deal with multiple obstacles at different
speeds; this achievement is attributable to the controller's
response speed based on the ANFIS.

The proposed work is compared to state-of-the-art
research papers. In the first comparison, the use of
BRNN-ANFIS showed better performance in terms of
time, which was reduced by 27% and 12% for the two
tested scenarios, respectively. BRNN-ABFIS was
compared with another work that used NN only in the
second comparison. The proposed work demonstrated
better performance in path length reduction
(approximately 6%) and time taken reduction to reach
the target, which is reduced by about 60%.
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The module used for fixed or stationary target, for future
a dynamic target should be considered, also multi target
have to be added to the environment.

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions

The authors have accepted the responsibility for the
entire content of this manuscript and approved its
submission.

Funding
No funding was received for this work.

Informed Consent Statement
Not applicable.

Declaration of generative AI and Al-assisted
technologies

The authors declare that no generative Al or Al-
assisted technologies were used in the writing process of
this manuscript.

Acknowledgment

The authors would like to thank the faculty and
employees of the University of Mosul / College of
Engineering, particularly the Mechatronics engineering
and Computer engineering departments, for their
assistance in completing this study.

References

[1] P. Martin and A. P. Del Pobil, ‘Application of
artificial neural networks to the robot path planning
problem’, WIT Transactions on Information and
Communication Technologies, vol. 6, 2025.

[2] E. A. Rodriguez-Martinez, W. Flores-Fuentes, F.
Achakir, O. Sergiyenko, and F. N. Murrieta-Rico,
‘Vision-Based Navigation and Perception for
Autonomous Robots: Sensors, SLAM, Control
Strategies, and Cross-Domain Applications—A
Review’, Eng, vol. 6, no. 7, p. 153, Jul. 2025, doi:
10.3390/eng6070153.

[3] Z. Yosif, B. Mahmood, and S. Al-khayyt,
‘Assessment and Review of the Reactive Mobile
Robot Navigation’, (AREJ), vol. 26, no. 2, pp.
340-355, Oct. 2021, doi:
10.33899/rengj.2021.129484.1082.

[4] Y. Zhang, C. Cui, and Q. Zhao, ‘Path Planning of
Mobile Robot Based on A Star Algorithm
Combining DQN and DWA in Complex
Environment’, Applied Sciences, vol. 15, no. &, p.
4367, Apr. 2025, doi: 10.3390/app15084367.

[5] F. Duchon et al., ‘Path Planning with Modified a
Star Algorithm for a Mobile Robot’, Procedia

Engineering, vol. 96, pp. 59-69, 2014, doi:
10.1016/j.proeng.2014.12.098.

[6] S. Al-Arif, A. Ferdous, and S. H. Nijami,
‘Comparative study of different path planning
algorithms: a water based rescue system’,
International Journal of Computer Applications,
vol. 39, 2012.

[7] B. Hernandez and E. Giraldo, ‘A Review of Path
Planning and Control for Autonomous Robots’, in
2018 IEEE 2nd Colombian Conference on
Robotics and Automation (CCRA), Nov. 2018, pp.
1-6. doi: 10.1109/CCRA.2018.8588152.

[8] X. Xu and N. Gupta, ‘Application of radial basis
neural network to transform viscoelastic to elastic
properties for materials with multiple thermal
transitions’, J Mater Sci, vol. 54, no. 11, pp. 8401—
8413, Jun. 2019, doi: 10.1007/s10853-019-03481-
0.

[91 S. Shanmuganathan, ‘Artificial neural network
modelling: An introduction’, in Artificial neural
network modelling, Springer, 2016, pp. 1-14.

[I0]M. H. Jebur and M. M. Ali, ‘Safe navigation and
target recognition for a mobile robot using neural
networks’, in 2017 14th International Multi-
Conference on Systems, Signals & Devices (SSD),
IEEE, 2017, pp. 705-712.

[11]N. Aamer and S. Ramachandran, ‘Neural network,
VLSI approach for autonomous robot navigation’,
in 2017 2nd International Conference on
Communication and Electronics Systems (ICCES),
Coimbatore: IEEE, Oct. 2017, pp. 935-942. doi:
10.1109/CESYS.2017.8321220.

[12]E. S. Low, P. Ong, and K. C. Cheah, ‘Solving the
optimal path planning of a mobile robot using
improved Q-learning’, Robotics and Autonomous
Systems, vol. 115, pp. 143-161, May 2019, doi:
10.1016/j.robot.2019.02.013.

[13]1K. Khnissi, C. Seddik, and H. Seddik, ‘Smart
Navigation of Mobile Robot Using Neural
Network Controller’, in 2018 International
Conference on Smart Communications in Network
Technologies (SaCoNeT), IEEE, 2018, pp. 205—
210.

[14]H. Li, Y. Mao, W. You, B. Ye, and X. Zhou, ‘A
neural network approach to indoor mobile robot
localization’, in 2020 19th  International
Symposium on Distributed Computing and
Applications for Business Engineering and Science
(DCABES), Oct. 2020, pp. 66-69. doi:
10.1109/DCABES50732.2020.00026.

Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 02, June 2026 13



[15]A. Pandey, V. S. Panwar, M. E. Hasan, and D. R.
Parhi, ‘V-REP-based navigation of automated
wheeled robot between obstacles using PSO-tuned
feedforward neural network’, Journal of
Computational Design and Engineering, vol. 7, no.
4, pp- 427-434, Aug. 2020, doi:
10.1093/jcde/qwaa035.

[16]M. K. Singh, D. R. Parhi, and J. K. Pothal, ‘ANFIS
Approach for Navigation of Mobile Robots’, in
2009 International Conference on Advances in
Recent Technologies in Communication and
Computing, Kottayam, Kerala, India: IEEE, 2009,
pp. 727-731. doi: 10.1109/ARTCom.2009.119.

[I7]A. Pandey, S. Kumar, K. K. Pandey, and D. R.
Parhi, ‘Mobile robot navigation in unknown static
environments using ANFIS controller’,
Perspectives in Science, vol. 8, pp. 421423, Sep.
2016, doi: 10.1016/j.pisc.2016.04.094.

[I8]M. S. Gharajeh and H. B. Jond, ‘Hybrid Global
Positioning System-Adaptive Neuro-Fuzzy
Inference System based autonomous mobile robot
navigation’, Robotics and Autonomous Systems,
vol. 134, p. 103669, Dec. 2020, doi:
10.1016/j.robot.2020.103669.

[19]M. Samadi Gharajeh and H. B. Jond, ‘An
intelligent approach for autonomous mobile robots
path planning based on adaptive neuro-fuzzy
inference system’, Ain Shams Engineering Journal,
vol. 13, no. 1, p. 101491, Jan. 2022, doi:
10.1016/j.asej.2021.05.005.

[20]S. Stavrinidis and P. Zacharia, ‘An ANFIS-Based
Strategy for Autonomous Robot Collision-Free
Navigation in Dynamic Environments’, Robotics,
vol. 13, no. 8, p. 124, Aug. 2024, doi:
10.3390/robotics13080124.

[21]D. Patel and K. Cohen, ‘Obstacle Avoidance and
Target Tracking by Two Wheeled Differential
Drive Mobile Robot Using ANFIS in Static and
Dynamic Environment’, in Fuzzy Information
Processing 2020, vol. 1337, B. Bede, M. Ceberio,
M. De Cock, and V. Kreinovich, Eds., in Advances
in Intelligent Systems and Computing, vol. 1337. |
Cham: Springer International Publishing, 2022, pp.
337-348. doi: 10.1007/978-3-030-81561-5_28.

[22]H. Liu, ‘Chapter 1 - Introduction’, in Robot
Systems for Rail Transit Applications, H. Liu, Ed.,
Elsevier, 2020, pp. 1-36. doi: 10.1016/B978-0-12-
822968-2.00001-2.

[23] A. Montazeri, A. Can, and I. H. Imran, ‘Chapter 3 -
Unmanned aerial systems: autonomy, cognition,
and control’, in Unmanned Aerial Systems, A.
Koubaa and A. T. Azar, Eds., in Advances in

Nonlinear Dynamics and Chaos (ANDC). ,
Academic  Press, 2021, pp. 47-80. doi:
10.1016/B978-0-12-820276-0.00010-8.

[24] A. M. Elshaer, R. A. Elmanfaloty, E. Abou-Bakr,
M. Elrakaiby, and K. Saada, ‘Exploring
Algorithmic Efficiency of A-Star and Dijkstra for
Optimal Route Planning in Green Transportation’,
Int. J. ITS Res., vol. 23, no. 2, pp. 1097-1107,
Aug. 2025, doi: 10.1007/s13177-025-00503-x.

[25]N. Sariff and N. Buniyamin, ‘An Overview of
Autonomous Mobile Robot Path Planning
Algorithms’, in 2006 4th Student Conference on
Research and Development, Jun. 2006, pp. 183—
188. doi: 10.1109/SCORED.2006.4339335.

[26] B. Bogaerts, S. Sels, S. Vanlanduit, and R. Penne,
‘Connecting the CoppeliaSim robotics simulator to
virtual reality’, SoftwareX, vol. 11, p. 100426, Jan.
2020, doi: 10.1016/j.s0tx.2020.100426.

[271D. Wu et al, ‘Application of Bayesian
regularization back propagation neural network in
sensorless measurement of pump operational state’,
Energy Reports, vol. 8, pp. 3041-3050, Nov. 2022,
doi: 10.1016/j.egyr.2022.02.072.

[28]N. H. Singh and K. Thongam, ‘Neural network-
based approaches for mobile robot navigation in
static and moving obstacles environments’, Intel
Serv Robotics, vol. 12, no. 1, pp. 55-67, Jan. 2019,
doi: 10.1007/s11370-018-0260-2.

[29]M. Shafiullah, M. A. Abido, and A. H. Al-
Mohammed, ‘Artificial intelligence techniques’, in
Power System Fault Diagnosis, Elsevier, 2022, pp.
69-100. doi: 10.1016/B978-0-323-88429-7.00007-
2.

[30]Y.-H. Chen and C.-D. Chang, ‘An intelligent
ANFIS controller design for a mobile robot’, in
2018 IEEE International Conference on Applied
System Invention (ICASI), Chiba: IEEE, Apr.
2018, pp- 445-448. doi:
10.1109/ICASI1.2018.8394280.

[31]D. J. Armaghani and P. G. Asteris, ‘A comparative
study of ANN and ANFIS models for the
prediction of cement-based mortar materials
compressive strength’, Neural Comput & Applic,
vol. 33, no. 9, pp. 45014532, May 2021, doi:
10.1007/s00521-020-05244-4.

[32]Z. M. Yosif, B. S. Mahmood, and S. Z. Saeed,
‘Artificial Techniques Based on Neural Network
and Fuzzy Logic Combination Approach for
Avoiding Dynamic Obstacles’, JESA, vol. 55, no.
3, pp- 339-348, Jun. 2022, doi:
10.18280/jesa.550306.

14 Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 02, June 2026



Biographies

Zead Mohammed Yosif received
the B.Sc. degree in Computer
Engineering from University of
Mosul, Mosul, Iraq, in 2006, and the

M.Sc. degree from Cankaya
University, Turkey. He got the
Ph.D. degree in  Computer

engineering Department, College of
Engineering, University of Mosul in 2022. He is a
lecturer at Mechatronics Engineering Department,
University of Mosul.

Basil Sh. Mahmood was born in
1953 in Mosul/ Iraq, graduated in
1976 from the University of Mosul/
Electrical department, and the M.Sc.
degree in Electronics and
Communications in 1979. Then he
joined in Computer Center of the
same university as an assistant
lecturer then after he got the degree of Ph.D. On
microprocessors architecture in 1996. Now, he is a
microprocessors and computer architecture professor in
the Computer Engineering Department/the University of
Mosul. He published with others four books and more
than 50 research papers in many journals and
conferences.

He supervised more than 22 M.Sc. and 14 Ph.D.
Students. His interests are in microprocessors, computer
architectures, image and signal processing, modern
methods of Artificial Intelligence. He awarded many
prizes and Medals.

Saad Zaghlul Al-khayyt received
the B.Sc. and M.Sc. degrees in
Mechanical engineering from Al-
Nahreen University, in 1992, and
1995 respectively, Baghdad, Iraq,
and the Ph.D. degree in Mechanical
engineering from Russia. He has
been a professor of Mechatronics
engineering in 2025. He has many

published papers in the field of mechatronics and
robotics.

Aws Anaz received his Ph.D. in
Doctor of Philosophy in Electrical
and Computer Engineering from the
University of Missouri-Columbia in
' 2019, where he specialized in smart
medical devices. He is currently an
instructor in the Mechatronics
Department at the University of Mosul. Besides his
academic experience, he has spent some years working
in the industry as a field engineer. His current research
interests include intelligent systems design, medical
devices, and rehabilitation robots. Recent work has
investigated automated screening of patients recovering
from hand surgery

Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 02, June 2026 15



	1. 0F(Introduction
	2. Related work
	3. Proposed system
	4. Initial Path Planning
	5. Obstacles classification and collision prediction
	5.1 Data collection
	5.2 Neural network for obstacle classification

	6. Adaptive Neuro-Fuzzy Inference System for Collision Avoidance.
	7. Results and discussions
	8. Comparison with other work
	9. Conclusion
	Conflict of Interest
	Author Contributions
	Funding
	Informed Consent Statement
	Declaration of generative AI and AI-assisted technologies
	Acknowledgment
	References
	Biographies


