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and Neural Network for Mobile Robot Dynamic Obstacle 
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Abstract: A mobile robot must be autonomous to avoid obstacles while traveling 
towards the target. Dynamic obstacle avoidance remains a significant challenge in 
mobile robotics. Although reactive navigation strategies have been applied to address 
this problem, relying on the single-stage module often results in limited efficiency and 
restricted overall performance. This paper proposes combining an adaptive neuro-fuzzy 
inference system (ANFIS) and a neural network (NN). The data for obstacle severity 
classification were used to train the Neural Network. The relative velocity and distance 
between the mobile robot and obstacles determine the zone. Zone 1 is dangerous, and 
Zone 5 is safe. This paper uses the ANFIS to avoid obstacles during the mobile robot's 
motion and to avoid collisions. Based on our empirical study, three essential features 
have been considered in this paper: the relative speed, distance, and angle between the 
robot and the obstacle as inputs to the obstacle avoidance system ANFIS. The output 
was a suggested steering angle and speed for the mobile robot. The simulation results for 
the tested cases show the capability of the proposed controller to avoid static and 
dynamic obstacles in a fully known environment. Our results show that the ANFIS 
System enhances the proposed controller's performance, reducing path length, 
processing time, and the number of iterations compared to state-of-the-art research 
papers. The proposed work demonstrated better performance in path length reduction 
(approximately 6%) and time taken reduction to reach the target, which is reduced by 
about 60%. 

Keywords: Mobile Robot Navigation, Dynamic Obstacle Avoidance, Neural Network, 
Adaptive Neuro-Fuzzy Inference System, Path Planning. 

 

1.  Introduction 

HE autonomous mobile robot can be defined as a 
machine combined with artificial intelligence 

techniques to understand the surrounding environment 
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conditions and find a path in the presence of dynamic 
and static obstacles [1]. The autonomous mobile robot 
should be able to respond to environmental conditions 
without human aid. The navigation strategies can be 
classified into local and global navigation depending on 
prior information about the environment. Global 
navigation concerns a completely known environment, 
while local navigation is related to unknown or partially 
known  environments[2]. Perception, localization/  
mapping, path planning, and motion control are the main 
parts of mobile robot navigation. The sensor-based data 
collection process is the perception step. The gathered 
information is utilized to create a map of the area 
(mapping). These sensors are also employed in 
localization, establishing the robot's position. Path 
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planning determines the target's collision-free route. 
Finally, motion control should be used to control the 
mobile robot's motion[3]. 

The most important thing is the existence of dynamic 
obstacles, which are obstacles in the environment that 
pose a danger to the robot. Actually, obstacles are at 
different positions, and they navigate in different 
directions and speeds. It is required for the robot to 
know the obstacles that exist within the environment and 
pose a threat to it. Another essential duty of the control 
system is to decide the speed and steering angle of 
navigation to avoid obstacles. The primary objective of 
this work is to design a module capable of enabling 
mobile robots to navigate around both dynamic and 
static obstacles. Additionally, the project emphasizes 
obstacle classification and incorporates the effect of 
relative velocity criteria in both obstacle classification 
and mobile robot control.  

This work proposes a reactive navigation approach to 
deal with dynamic obstacle avoidance. The system 
consists of three main parts: the first part concerns 
finding the initial path by using the A* algorithm; the 
second part is for obstacle classification, which is 
achieved using a Neural Network; and the third part is 
represented by employing ANFIS for controlling the 
speed and steering angle to avoid dynamic obstacles. 
This system combines local and global navigation for 
mobile robots traveling in the indoor environment. This 
paper is organized as follows: section 1 presents the 
introduction. The relative works are included in section 
2. In section 3, the proposed system is discussed and 
introduced. Section 4 presents the initial path algorithm. 
In section 5, the neural network and data collection. In 
section 6, mobile robot control using ANFIS is 
introduced. The results and discussion are introduced in 
section 7. Comparison with other work in section 8. The 
conclusion and suggestion are given in section 9. 

2. Related work 

As mentioned in the previous section, this work 
incorporates multiple intelligent techniques. Finding the 
initial path is a crucial step; hence, a widely recognized 
A* algorithm have been employed, which is known for 
its effectiveness in path planning [4]. Al- Arif et al. [6] 
Performed a comparison of three path planning 
algorithms, namely, the Breadth-first algorithm, the 
Dijkstra algorithm, and the A* (A-Star) algorithm, 
regarding computational time and memory usage. 
Among these, the A* algorithm yielded the most 
favorable results.  Also, Giraldo [7] Conducted a 
comparison involving RPM, genetic algorithm, and A* 
algorithm, where the A* algorithm consistently 
produced the shortest path lengths. 

Artificial Neural Networks (ANN) share many 
similarities with biological neural networks, and they are 

influenced by three factors: network design, weight 
generation (training/learning method), and the activation 
function. [8]. The Neural Network (NN) is used in many 
fields and applications, such as signal processing, image 
processing, pattern recognition, and mobile robot 
navigation. [9]. 

Jebur et al. [10] Proposed a Multi-layer Perceptron 
(MLP) for target recognition and obstacle avoidance. 
They utilized an IR camera to filter the red target from 
others and used MLP with IR sensors to avoid dynamic 
or static obstacles. A neural network was proposed by 
Aamer et al. [11]; they implemented an NN on an FPGA 
that uses pipelines. The NN was implemented on Xilinx 
Virtex-II to deal with the real-time experimental mobile 
robot with a dynamic obstacle. 

In another study, Low et al. [12] Employed the Flower 
Pollination Algorithm (FPA) to improve Q-learning for 
finding paths in static environments. The combination of 
Q-learning and FPA, called IQ-FPA, resulted in an 11% 
increase in efficiency. Their experimental setup involved 
a three-wheel mobile robot operating in a 3x3 meter 
environment. 

Khanisi et al. [13] A neural network produced the 
PWM of the right and left wheels from two input 
velocities. Li et al. [14] A neural network data fusion 
strategy was used to reduce the affection induced by 
inaccuracies in the environment or measurements and 
enhance the real-time performance and accuracy of 
localization for mobile robots in interior environments 
the position accurate within 6 cm. Pandey et al. [15] 
Introduced a path-planning optimization method using 
Particle Swarm Optimization (PSO) and Feed-Forward 
Neural Network (FNN). The FNN used distance sensors 
as inputs to calculate the steering angle and focused on 
path optimization. However, the use of PSO slowed 
down the system, the distance and time reduced about 
8% and 9% respectively for time and distance. A 
summary of the papers mentioned above is provided in 
Table 1. 

Table 1. NN research summary. 
Paper Method Obstacle 

Type 
Characteristics 

[10] 
(2017) 

MLP Dynamic Avoiding dynamic obstacle 

[11] 
(2017) 

NN Dynamic Use FPGA to implement NN, 
Pipelining, low memory, high-
speed 

[12] 
(2019) 

IQ-FPA 
IQD 

Static IQ-FPA reduces computation 
time, and IQD produces a 
shorter and smoother path 

[13] 
2018 

NN Static Controlling motors PWM 

[14] 
2020 

NN Static Enhancing localization 

[15] 
2020 

NN+PSO Dynamic PSO optimizes the path 
generated by NN 
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The integrated NN and Fuzzy Logic Inference system 
are the adaptive neuro-fuzzy inference system (ANFIS). 
Singh et al.[16] Suggested using ANFIS in mobile 
robots to avoid dynamic obstacles in unknown 
environments. The author employed three distance 
inputs (front, right, left) and an angle between them as 
ANFIS inputs, with the output being a suggested 
steering angle. The ANFIS system is called into action 
when the distance reaches a threshold that might lead to 
a collision between the robot and obstacles. By 
analyzing whether an object is close enough to cause a 
collision, the robot can effectively move away from 
obstacles in the opposite direction. The authors 
demonstrated the ANFIS's ability to control the mobile 
robot and avoid stationary and moving obstacles in 
crowded environments. Comparing to other paper the 
time and path reduced about 50%.  

Pandey et al. [17]  discussed the most crucial duties of 
any mobile robot: navigation and obstacle avoidance. 
The ANFIS controller was used for mobile robot 
navigation and obstacle avoidance in uncertain static 
environments. Several sensors, such as ultrasonic range 
finder and sharp infrared range sensors, are used to 
detect forward obstacles in the environment. Obstacle 
distances received from the sensors are fed into the 
ANFIS controller, and the controller output is a robot 
steering angle. NEAR and FAR are the two Gaussian 
linguistic variables chosen. They concluded that the 
ANFIS controller is superior in simulation and 
experimental testing. This proposed controller could 
solve dynamic obstacles and difficulties in the future.  

For autonomous mobile robots' collision-free 
navigation, Gharajeh et al. [18] developed a model 
consisting of an ANFIS controller for local obstacle 
avoidance and a GPS-based controller for the robot's 
global navigation toward the target. The GPS-based 
controller maintains the robot's navigation direction 
toward the static or moving target. When the robot 
detects any obstructions nearby, the ANFIS controller 
determines a steering angle. It calculates the angle using 
the robot's left, front, and correct distances from 
obstacles. 

Samadi et al. [19] proposed an effective path-planning 
strategy for autonomous collision-free navigation of 
wheeled mobile robots based on an Adaptive Neuro-
Fuzzy Inference System (ANFIS). Three ultrasonic 
sensors installed on the robot's left, front, and right sides 
were utilized to estimate the distance between obstacles 
and the robot. The ANFIS-utility function block utilized 
these sensor distances as inputs to determine an obstacle 
avoidance steering angle for the robot—the suggested 
method produced paths roughly 30% shorter than those 
generated by other methods. Error! Not a valid 
bookmark self-reference. 

Stavrinidis and Zacharia [20] introduce ANFIS to 
enhance a autonomous robot navigation system to 
achieve both static and dynamic obstacle. The authors 
compare between using ANFIS and fuzzy logic 
controller. The simulation results showed that the 
ANFIS lead to 33% rule reduction if compared to fuzzy 
logic controller in addition to reducing time to reach the 
destination about 2.5%.  

Bede et al [21] propose a four navigation system , two 
of them for wheel speed controlling and the others for 
obstacle avoidance through suggestion steering angle.  

Table 2 Summarizes the papers mentioned above. 
Table 2.  ANFIS papers summary.  

Paper 
(year) Method 

Characteris�cs 

Input Output Obstacle 
type 

Simula�on 
/experiment 

[16] (2009) ANFIS 

Le� and 
right front 
distances 
and target 

angle 

Steering 
angle 

Sta�c + 
Dynamic 

Experiment 
and simula�on 

[17] (2016) ANFIS Five 
distances 

Steering 
angle Sta�c Experiment 

and simula�on 

[18] (2020) ANFIS three 
distances 

Steering 
angle Sta�c Simula�on 

[19] (2022) ANFIS Three 
distances 

Steering 
angle Sta�c simula�on 

[20] 
(2024) ANFIS Six distances Motor 

speed 
Sta�c + 

Dynamic Simula�on 

[21] 
(2022) ANFIS Difference 

angle 

Motor 
speed & 
steering 

angle 

Sta�c 
+ dynamic Simula�on 

In conclusion, this work must incorporate multiple 
intelligent techniques, including the widely recognized 
A* algorithm for path planning. Various studies on 
neural networks and fuzzy logic have demonstrated their 
effectiveness in mobile robot navigation, obstacle 
avoidance, and path optimization. Additionally, the 
proposed integrated approach, ANFIS, shows promising 
results in avoiding dynamic obstacles and achieving 
collision-free navigation. Training a system for obstacle 
danger classification and navigation controller produces 
faster and more efficient navigation in complex 
environments. The combination of the A* algorithm, 
neural networks, and ANFIS opens new possibilities for 
future mobile robot control and obstacle avoidance 
advancements. 

3. Proposed system 

The proposed system can be understood by examining 
the primary task of the mobile robot. The proposed 
system begins by initializing the environment and 
defining the mobile robot start and target position. The 
A* search algorithm is then employed to compute an 
initial, optimal path. While navigating, the system 
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continuously monitors dynamic obstacles to gather data 
on their speed and relative distance. This data is 
subsequently processed by BRNN which classified the 
obstacles. This classification is determined whether the 
obstacle is danger or not. I the obstacle is non-critical, 
the robot continuous along the original A* path. 
However, if an obstacle is classified as dangerous, an 
ANFIS is activated to adjust the robot speed and steering 
angle. After successful avoiding the obstacle, the robot 
returns to its originally planned path.   

The proposed system is structured into three main 
components: (i) initial path generation using A* 
algorithm, (ii) obstacle collision prediction utilizing 
neural network, and (iii) obstacle avoidance 
implementation through ANFIS. the overall architecture 
of the proposed system is illustrated in Fig.1. 

 

Fig.1: Proposed System Block Diagram. 

4. Initial Path Planning  

Problems with finding a path or path planning are 
widespread in robotics because it is critical for 
autonomous mobile robot navigation. The path-planning 
challenge for mobile robots remains an issue in 
autonomous robotic research. Robotic systems can 
choose an optimal or sub-optimal path based on one of 
the considered criteria of mobile robot motion (such as 
the lowest traveling cost, shortest route, shortest motion 
time, and so on) [22]. A suitable trajectory is created as a 
series of actions to keep the robot moving from the start 
state to the target point while passing through several 
intermediate states. Every decision made by path 
planning algorithms is based on the information 
available at the time and the criteria used [23]. The 
Dijkstra algorithm is the foundation for the A* algorithm 
[24]. The A* algorithm is one of the most widely used 
algorithms for determining a feasible path between two 
points. It is very effective and straightforward to put into 
practice. The A* algorithm solves path-planning 
problems in robotics and video games. When A* is used 
in a 2D path planning problem, the robot is treated as a 
point, and the radius of the mobile robot enlarges 
obstacles. This calculation can be done using 
configuration space calculation. A* algorithm obtains a 
path between the start and goal point by connecting four 
or eight connected nodes in a square shape, depending 

on the application. The A* algorithm is a best-first-
search algorithm that combines the advantages of 
uniform-cost and greedy searches with a fitness function. 

(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) (1) 

where g(n) denotes the total cost from the start node to 
the current node, and h(n) represents the heuristic 
estimated function from the current node to the goal 
node. Typically, h (n) is calculated using the Euclidean 
distance between the current node and the goal node. 
[25]. 

5. Obstacles classification and collision prediction  

Classifying obstacles is very important, as it allows us 
to identify the degree of seriousness of the dynamic 
obstacles toward the mobile robot. The main objective of 
this classification is to determine whether the existing 
obstacle or obstacles are dangerous and have a 
probability of collision with the robot. two factors to 
assess obstacle danger have been suggested: the distance 
and the relative speed between the robot and the 
obstacle. 

The most important question is how the robot can 
know the obstacles within the environment that pose a 
threat to it and may collide with it. One idea is that a 
closer obstacle is more dangerous than a far obstacle. 
Still, the main issue that should be considered is the 
speed of the obstacle because if there are two obstacles 
at the same distance from the robot, the more dangerous 
obstacle moves faster than the other. Depending these 
ideas, the areas surrounding the robot are categorized 
into five regions or zones. The five classified zones are 
Zone 1, Zone 2, Zone 3, Zone 4, and Zone 5. Depends 
on the relative velocity and distance between the mobile 
robot and obstacles, where the Zone 1 is considered the 
most dangerous, while Zone 5 is a safe area, and the 
degree of danger varies among the five regions. In this 
work, the relative velocity in addition to distance is 
added in the obstacle classifications. Table 3 summarizes 
the zone's characteristics. 

Table 3. Zones Characteristics. 
No Zone Name Speed (cm/sec) Distance (cm) 
1 Zone 5 <=4 >=90 
2 <=6 >=120 
3 

Zone 4 
8-10 >=120 

4 6-8 90 to 120 
5 1-4 60 to 90 
6 

Zone 3 

>=10 >=90 
7 8-10 90 to 120 
8 6-8 60 to 90 
9 <4 < 60 

10 Zone 2 < 4 <60 
11 8-10 60-90 
12 Zone 1 >=10 <90 
13 >=8 <60 
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5.1 Data collection 

The region where obstacles surround the mobile robot 
can be divided into five zones. An essential step in 
collecting data is using it for neural network training so 
the neural network can classify the obstacles within the 
environment in which the robot moves. 

For Zone 1, let the specified speed be 10 cm/sec and 
the distance between 30 and 60 cm. To cover the 
distances between 30 and 60 cm, the Zone is divided 
into 10 points or 10 readings (30, 33, 36, 39, 42, 45, 48, 
51, 54, 57, 60). At each point, thirteen angle readings 
cover the range from -90 degrees to 90 degrees in a step 
of 15 degrees. The readings cover the range (-90) -(-75) 
-(-60) -(-45) -(-30) -(-15)-0-15-30-45-60-75-90. The idea 
is declared in Fig.2: Spectrum of path's angle, whereas 
the red region represents the area that needs to be 
divided. This case represents a speed of 10 cm/sec. The 
white arrows represent angle distribution. The dotted 
line between A&B points is the distance to be red. There 
are 10 readings at each angle, so each case has 130 
readings. Also, there are 16 cases. Thus, there are 16 * 
140 = 2080 samples. A Lidar sensor is used to measure 
the distance at certain angle. 

 
Fig.2: Spectrum of path's angle. 

Integrating Matlab (2019) and CoppeliaSim (Edu 
V4.1.0) software, a robot simulation environment used 
to prototype, develop, and test robot systems and 
algorithms, achieves the data collection steps. [26]A 
distance sensor in CoppeliaSim has been used to read the 
distance of moving objects that move at a specific speed 
and angle. When the object moves toward the mobile 
robot, CoppeliaSim sends ten reading values to Matlab 
to collect data for the training process. 

5.2 Neural network for obstacle classification  
More than one method can be used to learn and train 

the data to create a specified model. A back-propagation 
(BP) neural network trains data and builds the module. 
The BP stands for error correction between output and 
target. The standard back-propagation neural network 
uses the BP algorithm, which has three types of layers: 
input layer, hidden layer, and output layer (Fig.3). The 
training data enters the neural network through the input 

layer; after that, the hidden layer represents the 
processing layer, and the output layer is the last stage 
that produces the module's decision [27]. The output 
layer's results are compared with target data to find the 
error between them. Suppose the error is large enough 
and more significant than the threshold value. In that 
case, the gradient descent method is used to update the 
weights' values along the connections in a backward 
manner from the output layer until they reach the input 
layer. This iterative process continues to reduce the error 
objective function Ew. 

𝑜𝑜𝑜𝑜𝑜𝑜𝐸𝐸𝑤𝑤 =
1
2
�(𝑡𝑡𝑘𝑘 − 𝑂𝑂𝑘𝑘)2
𝑘𝑘

𝑘𝑘=0

 (2) 

 
Fig.3: the multi-layer perceptron. 

Where: 
• xi: The ith input 

• yj: The output of the jth hidden neuron 

• Ok: The output of the kth output neuron. 

• tk: The desired output 

• Vij: The weight from the ith input to the jth hidden 

neuron 

• Wkj: The weight from the jth hidden neuron to the kth 

output neuron 

• η: The learning rate. 

• I: index for input neurons. 

whereas  
The hidden layer's weights are updated using the 
equation (3): 

𝑉𝑉𝑖𝑖𝑖𝑖(𝑛𝑛 +  1) = 𝑉𝑉𝑖𝑖𝑖𝑖(𝑛𝑛) +  𝜂𝜂 × 𝛿𝛿𝛿𝛿(𝑛𝑛) × 𝑥𝑥𝑥𝑥(𝑛𝑛) (3) 

δj is the error signal produced by the jth hidden neuron. 
The weights of the output layer are updated using the 
equation (4): 
Wkj (n +  1)  =  Wkj(n)  +  η × δk (n)  ×  yj(n) (4) 

 
δk is the error signal produced by the kth output neuron. 
As clear in equation (5) 
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𝜹𝜹𝒌𝒌(𝒏𝒏 +  𝟏𝟏)  =  (𝒕𝒕𝒌𝒌 − 𝑶𝑶𝒌𝒌)  × (𝟏𝟏
− 𝑶𝑶𝒌𝒌)  × 𝑶𝑶𝒌𝒌 

(5) 

 
Using δk, the δj calculated from the equation (6) as 
follows: 

𝜹𝜹𝒋𝒋 =  (𝟏𝟏 − 𝒚𝒚𝒋𝒋)  × 𝒚𝒚𝒋𝒋 × � δ𝑘𝑘
𝑘𝑘

𝑘𝑘=0
× 𝑊𝑊𝑗𝑗𝑗𝑗 

(6) 

So, for any input, the output of the hidden neurons is 
obtained first, followed by the output of the output layer 
neurons. The above equations are used to update the 
weights of each hidden and output layer neuron. The 
hidden neuron error signals are propagated backward 
from the output layer to the hidden layer. This process is 
repeated for the next input-output pattern [28]. The 
process is repeated until the target error threshold or 
several iterations are reached, at which point learning 
stops. The descent of the standard BP learning 
algorithm, on the other hand, is a first-order gradient 
algorithm with a slow convergence rate. 

The Matlab (trainbr) command is used to perform 
Bayesian regularization back-propagation. By learning 
the zones that were suggested based on two inputs, the 
best performance is used to generate the solution. There 
are approximately 2000 pieces of environmental data 
knowledge. The training data was divided using Matlab's 
default divide function. The data are randomly divided 
and applied to the neural networks. 70 % of the data is 
used for training to compute the gradient and update the 
network weight and biases. A validation set representing 
15% of data is used to monitor errors during training. 
During the training process, the test set for plotting the 
test set error is 15% of the data. The network was trained 
over 1000 epochs. 

The general structure of the neural network after data 
reduction is shown in Fig.4. From the confusion matrix 
of the Bayesian Regularization Neural Network, which 
has two Hidden Layers after data reduction, as shown in 
Fig.4, the training accuracy equals 99.1%. The trained 
neural network model is used to test samples of data. 
These sample outputs are known. The confusion matrix 
is shown in Fig.5. The characteristics of this network are 
summarized in Table 4. 

 
Fig.4: Two Hidden Layer Neural Network Structure After 

Data Reduction. 

 

Fig.5: The Confusion Matrix of Bayesian Regularization 
Neural Network with Two Hidden Layers After Data 

Reduction. 
 
Table 4: Bayesian Regularization NN with two hidden layers 

After Data Reduction. 

 

6. Adaptive Neuro-Fuzzy Inference System for 
Collision Avoidance. 

An ANFIS was suggested by Singh et al. [16] for 
mobile robot navigation to avoid dynamic obstacles. The 
ANFIS system combines fuzzy logic and a neural 
network, whereas the input layer is a fuzzy logic system. 
However, a neural network takes the fuzzy logic rule 
from trained data. By this method, the module takes 
advantage of fuzzy logic and neural networks by 
combining them and excluding their disadvantages. 

The fuzzy logic approach is critical in the 
applications of intelligent systems, especially robotics. 
Integrating fuzzy systems and neural networks enhances 
the system performance by learning and updating 
membership function parameters to suit the 
environment. ANFIS combines a Neural Network and 
fuzzy logic system that uses empirical datasets to 
describe a complicated system's input/output behavior 
[18]. 

1 2 3 4 5

Target Class

1

2

3

4

5

O
ut

pu
t C

la
ss

 Confusion Matrix

167
18.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

168
18.7%

4
0.4%

0
0.0%

0
0.0%

97.7%
2.3%

0
0.0%

2
0.2%

275
30.6%

2
0.2%

0
0.0%

98.6%
1.4%

0
0.0%

0
0.0%

0
0.0%

118
13.1%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

164
18.2%

100%
0.0%

100%
0.0%

98.8%
1.2%

98.6%
1.4%

98.3%
1.7%

100%
0.0%

99.1%
0.9%

 Characteristics Neural network 2 
1 Number of input layer neurons 2 
2 Number of hidden layer neurons 10, 10 
3 Number of output layer neurons 5 

5 Hidden layer activation function Bayesian Regularization 

6 Output layer activation function Linear 
7 Learning rate 0,05 
8 Maximum number of epochs 1000 
9 Accuracy 99.1 % 

10 Validation accuracy 99.1 % 
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Takagi—Sugeno fuzzy inference system and artificial 
neural networks combine to form ANFIS. The ANFIS 
uses the dataset to build rules and a membership 
function. [17]. The ANFIS combines two fundamental 
machine learning techniques: the ANN and the Fuzzy 
Learning Machine (FLM). The FLM is utilized to 
transform the available inputs into desired outputs by 
utilizing densely linked ANN processing units. Early in 
the 1990s, it was developed as a universal estimator. In 
addition to combining the advantages of ANN and FIS, 
it also eliminates their disadvantages. It thus enhances 
generalization performance, archives extremely 
nonlinear mapping, and produces reliable solutions. As a 
result, researchers used it to handle classification, 
regression, and feature extraction problems in various 
fields of study. [29]. ANFIS's generalized structure 
comprises five layers (Fig.6) in addition to the input and 
output layers. [30].  

 
Fig.6: structure of ANFIS model with two inputs [31]. 

The characteristics of each layer are shown in the 
following: 

Layer 1 (Fuzzyfing Layer): Neurons in this layer are 
adaptive nodes with premise parameters. 

In layer 1, the outputs of the nodes A1 and A2 for the 
input x1 and the triangular membership function can be 
calculated at equation (7) 

 𝑇𝑇𝑖𝑖1(𝑥𝑥1) = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥1)

= max �min �
𝑥𝑥1 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎

,
𝑐𝑐 − 𝑥𝑥1
𝑐𝑐 − 𝑏𝑏

� , 0� ; 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖
= 1,2 

(7) 

Similarly, with the input x2, the outputs of nodes B1 
and B2 can be expressed as clear at equation (8). 

𝑇𝑇𝑖𝑖1(𝑥𝑥2) = 𝜇𝜇𝐵𝐵𝑖𝑖(𝑥𝑥2)

= max �min �
𝑥𝑥2 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎

,
𝑐𝑐 − 𝑥𝑥2
𝑐𝑐 − 𝑏𝑏

� , 0� ; 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖
= 1,2 

(8) 

Layer 2: (Implication Layer): The neurons are labeled 
Pi and are shown by a circle. The output node is then 
created based on the input signals. Equation (9) shows 
the output node indicates the firing strength of a rule wi. 

𝑇𝑇𝑖𝑖2 = 𝑤𝑤𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥1)  × 𝜇𝜇𝐵𝐵𝑖𝑖(𝑥𝑥2);𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑖𝑖
= 1,2 (9) 

Layer 3: (Normalizing Layer): Each neuron in this 
layer is a fixed neuron, denoted by a circle and 
designated N. The output is determined by the ratio of 
the ith rule's firing strength to the sum of all rules' firing 
strengths as it clear at equation (10) . 

𝑇𝑇𝑖𝑖3 = 𝑤𝑤𝑖𝑖 =  
𝑤𝑤𝑖𝑖

∑ 𝑤𝑤𝑘𝑘4
𝑘𝑘=1

; 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑖𝑖 = 1,2 (10) 

Layer 4: (Defuzzyfing Layer): The neurons in this 
layer are adaptive neurons with consequence parameters, 
see equation (11). 

𝑇𝑇𝑖𝑖4 = 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 = 𝑤𝑤𝑖𝑖(𝑚𝑚𝑖𝑖𝑥𝑥1 + 𝑛𝑛𝑖𝑖𝑥𝑥2
+ 𝑜𝑜𝑖𝑖);𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑖𝑖 = 1,2 

(11) 

Where mi, ni, and oi are the consequence parameters 
of the ANFIS model. 

Layer 5: (Combining Layer): This layer comprises a 
single neuron that combines all the inputs as shown at 
equation (12). 

𝑇𝑇𝑖𝑖5 = �𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖
𝑖𝑖=1

=;𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑖𝑖 = 1,2 (12) 

The system has three inputs and two outputs. The 
inputs include relative robot-obstacle speed, distance, 
and angle between obstacle and robot, as shown in Fig.7. 

 
Fig.7: ANFIS Input/Output system. 

The system outputs are suggested to be speed and the 
steering angle of the mobile robot. A data set should be 
available for system training to implement the ANFIS 
system. Five thousand records of data sets have been 
created. These data include a vector of 5 columns and 
5000 rows; the first three variables of each row represent 
system inputs, while the last two variables include the 
outputs of speed and steering angle. The distribution 
training data cover a range of angles from -90- to 90 
degrees, distances from 1 to 120 cm, and speeds from 1 
to 50 cm/sec. Using ANFIS, up to n-inputs can acquired 
but cannot obtain more than one output. For this reason, 
two training systems are employed due to the presence 
of two outputs. The first training system is for speed, and 
the second system is for steering angle. The data set has 
been divided into three parts. The first part includes 
4000 records for training, and the second and third parts 
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for testing and validation take about 500 samples each. 
The inputs of the two systems are the same. The speed 
training error is 0.71298, the testing error is equal to 
1.0266, and the validation error is equal to 0.9582. The 
membership that is used here is Gaussian membership. 
The angle training error is 1.766, the testing error equals 
3.93, and the validation error equals 3.08. The training, 
testing, and checking are presented in Fig.8 and Fig.9. 
The ANFIS block diagram is shown in Fig.10. 

Fig.8: Adaptive Neuro-Fuzzy Systems Model for Mobile 
Robot Speed. 

 
Fig.9: Adaptive Neuro-Fuzzy Systems Model for Mobile 

Robot Steering Angle. 
 

 
Fig.10: Adaptive Neuro-Fuzzy Systems Model Block 

Diagram. 
 

7. Results and discussions 

Environment chosen to implement the proposed 
system consists of 500 * 500 pixels. Each pixel 
represents 1 cm. Thus, the dimensions of the 
environment being worked on are 500x500 cm. These 
environment dimensions refer to the accuracy with 
which the robot moves, as the movement and accuracy 
will be at the level of one centimeter, which is good 
accuracy when moving the robot indoors[14] . Two 
types of environments have been used in this work. The 
first type is an empty environment that does not contain 
any static obstacles, which is called a free environment. 
The second proposed environment contains static 
obstacles. The positions of static obstacles have been 
chosen to make a challenge in some cases. 

The distance was derived analytically from the spatial 
coordinates of two reference points – the robot and the 
obstacle. The distance measured using the Euclidian 
distance equation between two pints, also the relative 
angle between them. 

The angle of the mobile robot can be calculated from 
two points, when the robot moves from one point to 
another, for example, P1 and P2 (the previous position 
and current position). We can use the tan inverse 
function to find the angle of the mobile robot, and in the 
same way, the angle of the obstacle can be found. 

In the following scenario (Test 1), the mobile robot 
starts position from the left bottom environment with 
position (50,10). The target position is (400,400). As it is 
clear, this distance approximately covers the minor 
diagonal of the environment. There are many dynamic 
and static obstacles in the environment. Static obstacles 
were determined in the previous step by reading about 
the environment without dynamic obstacles. The static 
obstacle is represented by black bars in the environment. 
A dotted red line plots the initial path from the start 
position to the target. There are three dynamic obstacles 
in the environment. These dynamic obstacles move in 
different directions. The first obstacle is the red color. 
The obstacle speed is 10 cm/sec, moving in the right 
direction from the environmental center. The second 
obstacle is colored green color. The second dynamic 
obstacle moves at -50 degrees in the left-down section of 
the environment with a speed equal to 10 cm/sec. The 
third dynamic obstacle is blue. The position of this 
obstacle is at the top and moves down in a direction with 
a speed equal to 10 cm/sec. The current position of 
dynamic obstacles is referred to by colored circles (red, 
green, blue). A colored line indicates the distance 
traveled by the obstacle, and each line is colored 
according to the color of the obstacle. The robot is 
specified by using a black circle surrounded by a blue 
rectangle, which represents the robot's current location. 
As was mentioned, a red dotted line drew the proposed 
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path, while the path that was traveled by the robot is in 
black. Consider the suggested environment, including 
stationary and moving obstacles, and the recommended 
initial path. Any of the moving obstacles that pose a 
threat to the mobile robot can be classified through this 
data.   

The suggested method continually gathers data on the 
robot's speed and the distance to the dynamic objects, so 
it continuously examines the moving obstacles and 
classifies them to find out which is more dangerous. As 
it is clear, the first dynamic obstacle is moving away 
from the mobile robot and its path. So, it is not classified 
as a danger or as having the possibility of collision. This 
moving obstacle is classified. After all, it is not 
dangerous because it's moving in a direction away from 
the robot. The second and third moving obstacles pose a 
danger to the moving robot, and there is a possibility of 
collision. For this reason, the system will decide to 
prevent a collision. The decision is represented by 
changing the speed of the mobile robot in addition to the 
steering angle.  

The suggested angle and speed are the outputs of the 
adaptive neural fuzzy system, where the entries for this 
system are the angle between the robot and the obstacle, 
the relative speed between the obstacle and the robot, 
and the distance between the obstacle and the robot. 
These data are input into two models: the first gives the 
suggested speed of the mobile robot, and the second 
gives us the suggested angle at which the robot turns to 
avoid the dynamic obstacle. The flowchart of the 
proposed system is shown in Fig.11. 

The robot avoids the obstacle twice; the first time, it 
avoids the second obstacle, and the second time, when 
the third obstacle is avoided. The distance of the 
proposed path is 540 cm, and the displacement between 
the starting point and the target is 530 cm, while the 
robot's length travelled after avoiding obstacles is 650 
cm. The time taken by the robot from the start towards 
reaching the goal, including avoiding the two obstacles, 
is 8.8 seconds, and the number of iterations is 86. The 
information and characteristics that are obtained through 
this scenario are presented in Table 5 and Fig.12. 

Another scenario (Test 2) is applied, including three 
dynamic obstacles. The first and the second dynamic 
obstacles are moving away from the mobile robot and its 
path, so they are not classified as dangerous obstacles or 
have the possibility of collision. Thus, these dynamic 
obstacles are classified. After all, they are not harmful 
because they move in a direction away from the robot; as 
for the third moving obstacle, even if it is moving in the 
direction of the proposed path of the robot, it is so far 
that it is classified on the basis that it is not dangerous. 
For these reasons, the robot continues motion on the 
initially suggested path. 

 
Fig.11: Proposed system flow chart. 

 

 
Fig.12: BRNN-ANFIS for Environment with Static and three 

Dynamic obstacles (Test 1). 
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The distance of the proposed path is 540 cm, and the 
displacement between the starting point and the target is 
530 cm. The time taken by the robot from the beginning 
of the path until reaching the goal is 7.4 seconds. The 
number of iterations is 78. The information and 
characteristics are presented in Fig.13 and Table 5. 

 

Fig.13: BRNN-ANFIS for environment with static and three 
safe dynamic obstacles (Test 2). 

Another scenario (Test 3) applied here includes three 
dynamic obstacles. The first obstacle starts from the top 
right corner and moves toward the mobile robot. It starts 
from the left button corner with an angle of -140 
degrees, and its speed equals 35 cm/sec. The second 
dynamic obstacle moves toward the mobile robot and its 
path with an angle of -45 degrees and 40 cm/sec speed. 
Obstacle 3 has the same speed as Obstacle 2, but the 
direction is -100 degrees. 

When the three dynamic obstacles, they are seen to 
move towards the mobile robot, thereby posing a clear 
danger and the possibility of collision. Consequently, 
each of the three obstacles is classified as dangerous, and 
the obstacle avoidance is activated. 

The critical aspect of this scenario is that the three 
dynamic obstacles move faster than in the previous 
examples. These obstacles pose a danger and the 
potential for a collision with the moving robot, but the 
robot avoids all these obstacles safely, well, and quickly. 

The proposed path is 546 cm long, and the 
displacement between the starting point and the target is 
530 cm. The robot traveled 660 cm after avoiding 
obstacles. The time taken by the robot from the 
beginning of the path to the goal is 16 seconds. The 
number of iterations is 116. Table 5 and Fig.14 show the 
information and characteristics obtained through the 
applied scenario. 

 

Fig.14: BRNN-ANFIS for Environment with Static and three 
dangerous Dynamic obstacles (Test 3). 

A scenario (Test 4) applied here includes three 
dynamic obstacles. The first and second dynamic 
obstacles move toward the mobile robot and its path. 
Obstacle 1's speed is 10 cm/sec, and its direction is -150 
degrees. Obstacle 2 and obstacle 3 have the same speed, 
which equals 10 cm/sec, and their directions are -37 and 
-90 degrees, respectively. 

When the first obstacle is observed to be close to the 
robot, a decision is made for the obstacle to be avoided 
in order to prevent any collision. For this reason, the 
system classified obstacle one as dangerous. As shown 
in Fig.14, the mobile robot starts its avoidance at point A 
and returns to the path at point B. As soon as the mobile 
robot arrives at the initial path at point B, obstacle 2 is 
classified as dangerous or has the possibility of a 
collision. For this reason, the mobile robot moves away 
from obstacle 2. During the mobile robot traveling from 
point B, another obstacle (obstacle 3) moves closer to 
the mobile robot. The third obstacle direction is -90 
degrees and moves toward the mobile robot. The most 
crucial issue in this scenario is continuously checking 
the environment during the path from point B to point C. 
In this situation, the mobile robot is using an avoidance 
strategy. Although the mobile robot uses the avoidance 
strategy at point C, the mobile robot system recalls the 
avoidance system again. After avoiding obstacle three, 
the mobile robot returns to point D's initial path toward 
the target. The distance of the proposed path is 300 cm, 
and the displacement between the starting point and the 
target is 300 cm. While the length that the robot 
travelled after avoiding obstacles was 350. The time 
taken by the robot from the beginning of the path until 
reaching the goal is 35 seconds. The number of iterations 
is 304. Table 5 and Fig.15 show the information and 
characteristics of the applied scenario. 
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Fig.15: Applying BRNN-ANFIS to three dangerous dynamic 
obstacles (Test 4) 

Table 5: Results and Characteristics for Tests (1-4). 

Characteristics Test 1 Test 2 Test 3 Test 4 
Initial path length using A* 

(cm) 541 541 546 300 

Time required for initial 
path(sec) 8 8 8 0.6 

direct length from start to end 
points 530 530 530 300 

Path length after avoidance 
(cm) 600 541 648 356 

Obstacle 1 velocity(cm/s) 10 10 35 9 

Obstacle 2 velocity(cm/s) 10 10 40 8 

Obstacle 3 velocity(cm/s) 10 10 40 5 

Robot velocity (cm /s) 120 120 60 10 

Relative velocity 1 - (cm /s) 108 108 94 16.5 

Relative velocity2 - (cm /s) 118 118 82 16 

Relative velocity3 - (cm /s) 120 120 100 15 

Time from start to goal 8 sec 7.4) 8 sec 35 

No of iterations 78 78 115 78 

The length of a paper is limited to 8 pages of two-  

8. Comparison with other work 

The proposed work was compared with two other 
existing works. The first comparison involved two 
scenarios compared with the proposed models. The first 
work under comparison suggested the use of a neural 
network and fuzzy logic (BRNN-FL) [27]. The 
comparison was based on several factors, including the 
distance the robot covered from the starting position to 
the target, the time to reach the target, and the number of 
iterations required to achieve the target. 

The first comparison was conducted in the proposed 
environment (Test 1), which consisted of two dangerous 
moving obstacles and one safe obstacle amidst static 
obstacles. The results demonstrated an improvement in 
the system's performance. Notably, the time taken to 
reach the target was reduced by 27%, and the number of 
iterations needed decreased by 7%. Additionally, another 
test was carried out, this time involving three dangerous 
obstacles moving toward the robot. In this scenario, the 
proposed work achieved a time reduction of 
approximately 12%. The results of the first comparison 
are presented in Table 6. 

Table 6: Comparison of the proposed model with BRNN-FL 
[32]. 

Characteristics BTNN-
FL[32] 

BRNN-
ANFIS 

BTNN-
FL[32] 

BRNN-
ANFIS 

Environment Test 1 Test 4 

Initial path length 
using A* 541 541 300 300 

Time required for 
initial path(sec) 8 8 0.6 0.6 

direct length from 
start to end points 530 530 300 300 

Obstacle 1 
velocity(cm/s) 10 10 9 9 

Obstacle 2 
velocity(cm/s) 10 10 8 8 

Obstacle 3 
velocity(cm/s) 10 10 5 5 

Robot velocity (cm /s) 120 120 10 10 

Path length after 
avoidance (cm) 601 600 358 350 

Increased path length 
ratio 11 11 19 17 

Time from start to end 
(sec) 15 11 41 36 

Number of iterations 92 86 321 304 

Another project is compared with the proposed model. 
Pandey et al. [15] Introduced a path planning 
optimization using PSO and FNN. They utilized a feed-
forward neural network, with distance sensors as inputs 
and the steering angle as the output, to focus on path 
optimization. However, their implementation of PSO 
resulted in a system slowdown. Consequently, the 
robot's velocity was limited to 3 cm/sec, covering a 
distance of only 110 cm in 39 seconds. In contrast, our 
system allows for significantly higher speeds, reaching 
up to 100 cm/sec, which improves overall efficiency. 

In comparison to our proposed model illustrated in 
Fig.16(a), the work by [15] was also examined, as 
depicted in Fig.16(b). The results of our designed model 
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exhibit superior performance in terms of both the 
distance travelled and the time taken to reach the goal, as 
evidenced in Table 7. 

 
(A) Proposed method 

 
(B) PSO-tuned FNN [15] 

 
Fig.16:Comparison between BRNN-ANFIS (proposed 

method) and PSO-tuned FNN[15]. 

Our proposed system presents a significant 
advancement over the work in [20] by addressing its key 
limitations, namely the absence of global path planning, 
obstacle classification, and quantitative performance 
metrics. Our system introduces a hybrid intelligent 
architecture that integrate A* algorithm for optimal 
global path planning. The BRNN for classifying 
obstacle, and ANFIS for adaptive navigation control. 
Out system archives 6% reduction in path planning and 
60 % faster navigation.  

 

Table 7: Comparison and characteristics between BRNN-
ANFIS and PSO-tuned FNN. 

Characteristics BRNN-
ANFIS PSO Tuned FNN[15] 

Path length 387 cm 410 cm 
Time required to travel 10 sec 39 sec 

Time to find the initial path 5 sec 0 
Total time 15 sec 39 

Path length reduction 6% 
Time reduction 62% 

Based on previous comparisons, our proposed model 
outperforms existing approaches regarding navigation 
efficiency and obstacle avoidance. The comparisons 
show significant improvements in reaching the target 
faster and with fewer iterations. Our system's higher 
velocity capabilities offer a clear advantage over PSO 
and FNN-based methods. These findings highlight the 
effectiveness of our approach for mobile robot 
navigation in complex environments, making it a 
promising solution for future dynamic obstacle 
challenges. 

9. Conclusion 

Navigating an autonomous mobile robot with obstacles 
moving toward its path is still a significant challenge. 
The use of a single-stage module leads to a deficiency 
and a limitation in the controller's performance in 
avoiding dynamic obstacles.  

The proposed dynamic obstacle's data collection of 
relative speeds and distances for training neural 
networks made it capable of making correct zone 
classification. Using the neural network to classify the 
danger of the moving obstacle leads to reducing the 
processing time. Thus, the mobile robot could rush in the 
presence of safe, dynamic obstacles and fast dynamic 
obstacles. 

The simulation results proved that using the ANFIS to 
control the mobile robot's speed and direction of motion 
allows it to deal with multiple obstacles at different 
speeds; this achievement is attributable to the controller's 
response speed based on the ANFIS.  

The proposed work is compared to state-of-the-art 
research papers. In the first comparison, the use of 
BRNN-ANFIS showed better performance in terms of 
time, which was reduced by 27% and 12% for the two 
tested scenarios, respectively. BRNN-ABFIS was 
compared with another work that used NN only in the 
second comparison. The proposed work demonstrated 
better performance in path length reduction 
(approximately 6%) and time taken reduction to reach 
the target, which is reduced by about 60%. 
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The module used for fixed or stationary target, for future 
a dynamic target should be considered, also multi target 
have to be added to the environment.  
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